

sion so that maximum bandwidth is unaffected by it. Inversion manifolds such as shown in Fig. 5 have been computed for other modes and particularly for the case $\epsilon_2 < \epsilon_1$ which leads to backward waves [9].

It appears that the two sequences $TE_{11}-TM_{01}-TE_{21}-TE_{01}$ and $TE_{11}-TE_{21}-TM_{01}-TE_{01}$ are the only modal sequences possible for the case $\epsilon_2 > \epsilon_1$, at least for values of this ratio up to 200.

CONCLUSIONS

The foregoing treatment demonstrates that by proper dielectric loading of circular waveguides the bandwidth advantage of homogeneously loaded square waveguides versus circular may be reduced to within 2.5 percent of center frequency (~ 31.8 percent for circular versus ~ 34.3 percent for square). This effect is important in the design of wide-band phased-array radiators. Bandwidth increases above these limits may be possible for a circular waveguide loaded with three different dielectrics instead of two. However, this case appears to be too impractical for implementation. Interestingly, the full bandwidth advantage of the square waveguide cannot be restored by lining it with dielectric. In sharp contrast to the circular waveguide, the bandwidth of dielectric-lined square waveguides is always less than the fully filled guide value. A paper on this phenomenon will be published shortly.

In connection with the phased-array application it should be

pointed out that the mutual coupling problem involving inhomogeneously loaded waveguides in infinite arrays has not yet been treated. In the absence of such a solution, a small array would probably have to be constructed and tested to ensure that the active element is well matched and without resonances (blind spots) within the design scan range and bandwidth.

REFERENCES

- [1] G. N. Tsandoulas, "Wideband limitations of waveguide arrays," *Microwave J.*, vol. 15, pp. 49-56, Sept. 1972.
- [2] G. J. Laughlin, E. V. Byron, and T. C. Cheston, "Very wide-band phased-array antenna," *IEEE Trans. Antennas Propag.*, vol. AP-20, pp. 699-704, Nov. 1972.
- [3] G. N. Tsandoulas and G. H. Knittel, "The design and performance of dually polarized square-waveguide arrays," *1972 Antennas Propag. Int. Symp. Dig.* (Williamsburg, Va., Dec. 11-14, 1972), pp. 157-160.
- [4] P. J. Meier and H. A. Wheeler, "Dielectric-lined circular waveguide with increased usable bandwidth," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-12, pp. 171-175, Mar. 1964.
- [5] P. J. Meier, M. A. Balfour, and H. A. Wheeler, "Circular waveguide loaded with dielectric discs for increased usable bandwidth," *IEEE Microwave Theory Tech. Int. Symp. Dig.* (Long Island, N. Y., May 19-21, 1964), pp. 33-36.
- [6] P. J. Meier and S. Arnow, "Wide-band polarizer in circular waveguide loaded with dielectric discs," *IEEE Trans. Microwave Theory Tech. (1965 Symposium Issue)*, vol. MTT-13, pp. 763-767, Nov. 1965.
- [7] G. N. Tsandoulas and W. J. Ince, "Modal inversion in circular waveguides—Part 1: Theory and phenomenology," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 386-392, Apr. 1971.
- [8] P. J. B. Clarricoats, "Propagation along unbounded and bounded dielectric rods," in *Proc. Inst. Elec. Eng.*, Mon. 409E and 410E, Oct. 1960, pp. 170-186.
- [9] R. A. Waldron, "Theory and potential applications of backward waves in non-periodic inhomogeneous waveguides," *Proc. Inst. Elec. Eng.*, vol. 111, pp. 1659-1667, Oct. 1964.

Letters

Comments on "Accurate Determination of Varactor Resistance at UHF and its Relation to Parametric Amplifier Noise Temperature"

A. UHLIR, JR.

In the above paper,¹ a letter² written by me is cited as erroneously suggesting that the series resistance of varactor diodes varies inversely as the square of the frequency. Anyone who refers to my letter will see that the opposite is the case. I showed that such a result could be explained as a measurement artifact, the frequency-dependent transformation of losses in a distributed circuit.

My letter was written in support of an earlier hypothesis that the series resistance would not be very frequency dependent. The measurements¹ confirm that hypothesis.

Manuscript received June 6, 1973.
The author is with the Department of Electrical Engineering, Tufts University, Medford, Mass. 02155.

¹ K. İnal and C. Toker, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 327-333, May 1973.

² A. Uhlir, Jr., "Apparent frequency dependence of series resistance of varactor diodes," *Proc. IEEE (Corresp.)*, vol. 51, pp. 1246-1247, Sept. 1963.